Webinar

Automating Key Components of Finite Element Research

Tue, September 18, 2018
4:00 - 5:00 PM CEST, 10:00 - 11:00 AM Eastern Time (ET)

by Ir. Amelie Sas
PhD student division of Biomechanics in the department of Mechanical Engineering at the KU Leuven

Register

In total hip replacement surgery, most traditional designs of femur components have a long stem. Short hip stems have only recently been introduced, and these are presumed to reduce proximal stress shielding compared to traditional, long stems. However, due to their smaller contact area with the bone, high peak stresses and areas of stress shielding could appear in the proximal femur, especially in the presence of atypical bone geometries. Researchers at the University of Leuven and University Hospital of Brussels wanted to better understand this aspect by virtually implanting a commercially available calcar-guided short stem (Optimys from Mathys AG, Bettlach, Germany) in a series of bones with deviating proximal geometry, and by performing finite element analyses. However, to investigate a wide range of femurs, a large number of finite element models had to be created. As this is time-consuming and labor-intensive work, it introduced the need for an automated methodology that would allow the team to assess the implant's performance. Learn how they automated key components of this element study in this webinar.

Img
Amelie Sas

Ir. Amelie Sas (1994) is a PhD student at the division of Biomechanics in the department of Mechanical Engineering at the KU Leuven

Her research focusses on the treatment and prevention of femoral fractures, and is supported by the Flemish Research Foundation (FWO). Currently, she researches the effectiveness of a minimally-invasive technique to prevent fractures in patients with bone metastases by developing patient-specific computer models, i.e. finite element models.

Amelie holds a Bachelor of Mechanical-Electrical Engineering and a Master of Biomedical Engineering from the KU Leuven.

Please fill out the form to register for the webinar

Personal Details
Additional Info
Existing customer?
Privacy Policy Agreement