Materialise, the Materialise logo, Magics, Streamics and 3-matic are trademarks of Materialise NV in the EU, US and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

© 2017 Materialise NV, All rights reserved
Table of Contents

1. Introduction to Build Processors ... 5
2. This User Guide ... 6
3. Setup .. 7
 3.1. Prerequisites ... 7
 3.2. Installation .. 8
 Build Processor ... 8
 Magics ... 10
 3.3. Licensing ... 11
 Working with a Local License .. 11
 Working with a Floating License ... 11
4. Build Processor Management .. 12
 4.1. Access the Build Processor Manager ... 12
 4.2. Add a Local BP Machine .. 14
 4.3. Add a Network BP Machine ... 16
 4.4. Remove a BP Machine ... 17
 4.5. Configure a BP Machine .. 17
 4.6. Access the BP Machine Properties .. 19
 4.7. Access the BP Machine Job Queues .. 19
 4.8. Change the BP System Storage Location 21
 4.9. Configure Tray Notifications ... 21
5. Build Processor and Machine ... 23
6. Build Processor and Magics / Magics Print .. 24
 6.1. Create a machine scene ... 24
 6.2. The Machine Toolbar .. 25
 Configure Printer .. 26
 Configure Platform .. 26
 Build .. 27
7. Build Processor Setup - Profile Editor .. 31
 7.1. Machine Settings .. 31
 Platform ... 31
 Image ... 32
 Export .. 32
 7.2. Material .. 34
 Material controls ... 34
 7.3. Build strategy ... 35
 Slicing .. 36
 Curing .. 36
Image post processing ... 36
Scaling ... 36
Baseplate.. 37
Non-Solid supports .. 39
Scaffolding Supports ... 40
8 Slice Based Operations .. 48
8.1. Why .. 48
8.2. How .. 48
9 How To .. 49
9.1. How to improve the surface quality of your parts 49
9.2. How to define the suction force ... 50
9.3. How to define the critical angle ... 50
10 Frequently Asked Questions .. 51
10.2. How do I access the Build Processor in Magics? 51
10.3. How do I access the profile editor? 51
10.4. Can I view the generated Build Processor output? 51
10.5. Can I see what settings were applied to my processed job? 51
11 Typical Error message .. 52
11.1. Error message: 'Failed to generate scaffolding support' 52
11.2. Error message: 'Check if the BPS service is running' 52
11.3. Error message: 'Incorrect xxx profile for "Platform". Please check profiles assignment.' 52
11.4. Error message: 'Unexpected open contours in xxx during slicing' 52
11.5. Error message: 'The part exceeds the build envelope's bounds after rescaling.' 53
12 Support .. 54
12.1. Contacts ... 54
12.2. Create a Report File ... 54
1 Introduction to Build Processors

Materialise works in close collaboration with DLP based 3D printer machine manufacturers to develop a customized and integrated solution, which allows you to get the most out of your DLP based machines and create parts with the highest quality possible. Our **Build Processor Software** can be considered as an advanced export function that bridges the gap between your digital build files and your DLP based 3D print machine, helping to ensure a smooth and trouble free production of parts both in R&D and production environments.

How the Build Processor connects with a Machine to the Materialise 3D Print Suite, is visualized below:

![Diagram showing the connection between Materialise Magics, Build Processor, and the DLP machine.]

The complete Materialise 3D Print Suite includes the following components:

<table>
<thead>
<tr>
<th>Create the best designs for 3D Printing</th>
<th>Prepare your files for 3D Printing</th>
<th>Get the most out of your 3D printing machine</th>
<th>Manage your AM production process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 This User Guide

Is valid for:
- The Standard DLP Build processor
- All OEM rebranded build processors derived from the Standard DLP Build processor (clones)

Will guide through all necessary steps in understanding:
- How to install and activate the Build Processor
- How to operate the Build Processor Manager
- How to handle the Build Processor from Magics
- How to setup the Build Processor processing profiles

And will also provide useful information on:
- How to setup parameters
- Frequently asked questions
- Typical error messages
- How and where to request for support

In the guide these message boxes will indicate:

Technical Requirement

These boxes appear throughout this guide and describe a technical requirement to ensure that the build processor works correctly. If you are not sure on how to attend to these, please contact your IT department.

Warnings / Notifications

These boxes appear throughout this guide and emphasize various warnings or important notifications. Many of these are linked to some of the more frequently asked questions regarding the workings of the build processor.
3 Setup

3.1. Prerequisites

Before installing the Build Processor

- **Support**

 It would be a great help if you could contact us in case you experience any unexpected software behavior. For all problems, questions or suggestions regarding the Build Processor please contact your local Materialise office (see chapter 12: Support).

- **Minimum System requirement**

 ✓ Windows® operating system version 7
 ✓ Windows® operating system version 8
 ✓ Windows® operating system version 10

- **Software installation Packages**

 ✓ Materialise Magics software version 21
 ✓ Standard DLP Build Processor 1.0

- **We hope you will enjoy the Build processor in your DLP/LCD based 3D printing applications.**
3.2. Installation

Warnings / Notifications

This chapter is only valid for customers who are installing the build processor as a separate product. When the build processor is bundled with other products into a single installer you should follow the installation guide of the bundled product.

Technical Requirement

Please note that administrative rights are required to install the software.

Build Processor

1. Double click the Build Processor bundled installer (64- and 32-bit respectively):

 !StandardDLPBuildProcessor.exe
 !StandardDLPBuildProcessor-x64.exe

 This is a ‘bundled installer’, meaning that it is responsible for installing all the different necessary components to run the BP. These include:
 - Microsoft® .NET Framework 4.5
 - Materialise Local License Server 6.0
 - Build Processor System 2.0
 - Standard DLP Build Processor 1.0 or similar OEM rebranded DLP Build processor

2. Read the license agreement, accept it and hit “Install”:

 !Software Beta Testing Agreement

3. The following screen will appear, informing you about the components that are already installed on your system and those that will be installed during this installation. In the following dialog hit “Proceed”:

 !Component Installation Screen
4. The Build Processor System, BP and other components will be installed or updated. A final screen will appear showing you the overall result of the installation process. Pressing the “Finish” button will close the installation window.

Technical Requirement
If prompted to reboot your system after installation, please do as such.

5. Before using the BP, please verify that all components have been correctly installed by checking the Programs and Features list on your system:

- **Materialise Local License Server 6**
- **Build Processor System**
- **StandardDLP Build Processor Beta 1.0.00005 (64-bit)** (Or OEM naming)
Magics

Please refer to the Magics User guide for detailed installation instructions.
3.3. Licensing

For instructions on how to (re)active your Materialise software licenses, please consult:

http://software.materialise.com/frequently-asked-questions-materialise-software

Once the Materialise Magics software and the Build Processor have been successfully installed, you will need to license it. The BP performs a license check when:

- Processing and uploading a job
- Calling BP functions from within Materialise Magics or Streamics software

You can either license your software locally or use a floating license server to supply a license for you. This section will quickly describe these two different models of licensing.

Working with a Local License

Local Licensing is the traditional system with the license stored locally on each computer (see figure below). The software can only be used on the computer for which the license is issued. However, more than one session of Materialise Magics software & Build Processor can be opened on a single computer.

Working with a Floating License

The licenses for Floating Licensing are stored on a central computer somewhere on the company network (Server PC). This computer has the Materialise Floating License Server installed to manage all the licenses available on the network.

When a session of Materialise Magics software and Build Processor is started on a computer, the software will contact the Floating License Server via the network. When there is a license available, the Floating License Server will assign a license to Materialise Magics software & Build Processor allowing it to open.

However, if all licenses are in use, Materialise Magics software & Build Processor will not open. The user must wait until elsewhere on the network an open session closes, thus making a license available.

You can install Materialise Magics software & Build Processor on every PC connected to the company network, but the number of open sessions is limited by the number of floating licenses available.
4 Build Processor Management

4.1. Access the Build Processor Manager

The Build Processor Manager is the main application for managing and configuring your 3D printers and their settings and profiles. Therefore, you need to navigate to the **Build Processor Manager**, which you can find as a desktop shortcut icon:

![Build Processor Manager](image)

by going to your Windows® operating system *Control Panel* and clicking on Build Processor Manager

![Control Panel](image)

by double clicking the tray icon in the right of your taskbar

![Tray Icon](image)

Note

Depending on your Windows® operating system settings, this icon might not be permanently visible and hidden behind the arrow shown in the screenshot above.
This BP Manager Toolbar contains the following control buttons:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This button is used to add a new 3D printer (local or network) to your system</td>
</tr>
<tr>
<td></td>
<td>This button is used to refresh the list of installed printers.</td>
</tr>
<tr>
<td></td>
<td>Change the way in which the printers are shown in the Build Processor Manager. Shows all added printers in a list. Printers can be sorted by Name, Status, Queue Status, Build Jobs, Description, Printer Location, Manufacturer, Model and Network Location by left clicking the according entry in the menu bar.</td>
</tr>
<tr>
<td></td>
<td>Combination of Details and Tiles option: An icon and information regarding the printer is shown but without sorting option.</td>
</tr>
<tr>
<td></td>
<td>Default alignment of all added printers. Printers are shown as separate big icons including their Name, Printer Location and Status.</td>
</tr>
<tr>
<td></td>
<td>Open the Build Processor System options window</td>
</tr>
<tr>
<td></td>
<td>Opens a menu selection: Generate a report. This tool will assist you in collecting relevant information about the status of the BP System. No personal information is collected; you can verify the contents of the report by opening the generated Cabinet (.cab) file. Please see section 12.2: Create a Report File on page 54 for information on how to transfer the .cab file to Materialise. Provides access to the BP User Guide. Opens new window containing information about the Build Processor system version and Copyright of Materialise.</td>
</tr>
</tbody>
</table>

Materialise nv | Technologielaan 15 | 3001 Leuven | Belgium | software@materialise.be | materialise.com
4.2. Add a Local BP Machine

1. Open the Build Processor Manager. Click the “Add a 3D Printer” button in order to register a device in the System. When no machines have been installed yet, this button will also be visible in the center window region.

2. The following dialog will appear. Choose the machine type of which you want to register a new instance and hit the “Add”-Button:

3. A window will appear, allowing you to define your new printer properties. Please check if the correct version of the BP is selected in the Build Processor dropdown menu.
Note

Most of the printer properties can always be changed afterwards, in the Printer Properties window.

The following printer properties can be set

<table>
<thead>
<tr>
<th>Name</th>
<th>An appearance name for the printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Processor</td>
<td>Select the appropriate BP driver version</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the printer’s main functionality (optional)</td>
</tr>
<tr>
<td>Printer Location</td>
<td>A description of the printer’s physical location (optional)</td>
</tr>
</tbody>
</table>

Click the “Add” button to proceed.

4. The “Launch configuration after install” option is enabled by default and will take you to Build Processor Configuration window after pressing the Close button.
4.3. Add a Network BP Machine

With the Build Processor System, it is possible to work with network machines. This allows multiple users or workstations to connect to the same Build Processor machine, sharing and synchronizing its settings, profiles and job queues.

Adding a network BP printer is similar to adding a BP local printer. The only difference is the screen where you select your BP printer:

1. Open the Build Processor Manager (on Workstation #2 in the above diagram) and click the “Add a 3D Printer” button

2. Pick Network from the search location drop-down list

3. In the Host entry field, enter the ‘Network Location’ of system which has the local printer installed (Workstation #1 in the above diagram). The name of this ‘Network Location’ can be found in the Printer Properties (see also section 4.6: Access the BP Machine Properties on page 19) window of the network printer. Next to this field you can define the port to be used for communication with the specified ‘Network Location’ – this is 45118 by default.

4. Press the refresh button to search for printers in this network location

5. Select the desired network printer(s) and click the Add button to proceed. Multiple printers can be selected (using CTRL) and added simultaneously
6. The following steps in the wizard are identical to step 3 onwards in section 4.2: Add a Local BP Machine on page 14.

4.4. Remove a BP Machine
In order to remove a machine, you can
- Select the printer you want to remove and click the “Remove” button in the BP Manager Toolbar
- Right mouse click on the desired printer and select Remove

4.5. Configure a BP Machine
The Processor Configuration window can be accessed by either
- Selecting the desired printer and clicking the Configure button
- Right mouse click on the desired printer and selecting the Configure option
The Configure Printer window allows establishing a connection between the BP and the machine, as well as consulting the available profiles and parameters. More details can be found in chapter 5: Build Processor and Machine on page 23.
4.6. Access the BP Machine Properties

In order to enter the 3D Printer properties window, either

- Select the desired printer and click the Properties button
- Right mouse click on the desired printer and select the Properties option

The 3D Printer properties window contains all details of your BP printer. The Name, Description and Printer Location field of the printer can be arbitrarily changed.

4.7. Access the BP Machine Job Queues

You can access the list of jobs associated with a given printer by either

- Selecting the printer in the Build Processor Manager and then clicking Open Queue in the tool bar. The queue window will then show up
- Right mouse click on the desired printer and selecting the Show Queue option
- Double click on the desired printer

The ‘Printer Queue’ window gives an overview of all the jobs processed by the Build Processor. There are two job queues: ‘Preprocess Jobs’ and ‘Build Jobs’.
The columns of these job queues are customizable (through a right mouse click on the column headings) and can display different information for each job.

The right click options for each job are the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start job</td>
<td>(Re)start the job (after pausing)</td>
</tr>
<tr>
<td>Pause job</td>
<td>Pause the job’s current progress</td>
</tr>
<tr>
<td>Cancel job</td>
<td>Cancel the job’s current progress</td>
</tr>
<tr>
<td>Remove job</td>
<td>Delete job from the job queue, any relevant data from machine software side will remain intact.</td>
</tr>
<tr>
<td>Remove job…</td>
<td>If a job hangs in Cancelling or Deleting state after asked to be removed (e.g. job owner is a remote client that is not available), this option removes the job regardless.</td>
</tr>
</tbody>
</table>
Open Upload Folder Open the folder where the processed job is sent to

Note that the Standard DLP Build Processor has a ‘passive role’ once the job has been sent to the machine. In other words: it does not have any influence on an active build cycle. After uploading to the Machine, only the corresponding BP job entries can be manipulated (not the actual job or build cycle on the Machine).

4.8. Change the BP System Storage Location

By default, the Build Processor System stores its configuration and temporary processing data in a specific directory located in the Windows® operating system partition. You may choose a different directory if you wish to. To do that, you need to bring up the options dialog first:

In the Build Processor Manager, click the tool icon:

In the tray icon context menu, select the entry Options:

This will bring up the Options dialog. In that window, click Change Storage Location. A dialog will pop up, allowing you to change the Build Processor System storage location.

4.9. Configure Tray Notifications

Whenever the status of a build job or printer changes, you will be notified via tray callouts as shown below:

The Tray Icon is able to provide printer notifications:

And job notifications:
Clicking on these pop-up message will display the corresponding Build Processor window. To configure the Tray Icon and its properties, go to the Build Processor System Options which is accessible via the BP Manager Toolbar via the right-click menu of the Tray Icon itself. See also section 4.8 on page 21 on how to enter the BP Options menu.
5 Build Processor and Machine

The Build Processor is the component that bridges the gap between the Materialise Magics 3D print suite (including Magics and Streamics) and the machine. The architecture of this connection is illustrated below:

In the Build processor framework the machine representation is in most cases virtual and does not represent a real link with the machine however in some cases a real machine link can be present. In such a case the machine representation corresponds with a real machine and the build queue will represent the real progress on the machine.

Note

No uploading to a physical machine is envisioned in the Build processor. Uploading a job to the machine/printer in the build processor means moving the job from the preprocess to the build queue and copying the job folder/file to the upload directory specified in the Configure Printer dialog.
6 Build Processor and Magics / Magics Print

This section will guide you through a typical workflow, using the Materialise Magics software. Note that it is required to have a Build Processor Machine added (see Chapter 4 on page 12) and connected to the Machine (see Chapter 5 on page 23) before proceeding.

6.1. Create a machine scene

In Materialise Magics software, go to the Build Preparation toolbar (Magics) or Basic flow toolbar (Magics Print) and click New Scene. (Screenshot is from Magics)
A Change Machine dialog box will appear, where you can choose *B.Proc: Standard DLP Machine Printer* to load a platform using your printer’s BP.

The platform will now appear in your Materialise Magics software workspace. Note that all platform sizes are automatically retrieved from the Machine, and visualized as shown below:

The blue bounding box represents the ‘Buildable Volume’. It is highly recommended to place all parts inside the bounds of this volume. These dimensions already compensate for the rescaling applied to the parts upon processing.

The white baseplate indicates the build platform of the machine.

You can import, fix and orientate all necessary parts as you normally would, followed by the usual nesting operations.

6.2. The Machine Toolbar

When working in a BP scene in Magics, the toolbar shown below is made available:
Configure Printer

With the configure printer dialog you can navigate to the profile editor and the local license server. You can also assign an upload folder that will be used to store your build folder/file when a job is processed in 3D build mode.

Configure Platform

To the corresponding profile section in the profile editor.
Using the Configure Platform button, you can assign the Preslicing, Slicing and Build strategy profile to your current build platform. Note the available profiles and corresponding parameters are defined by the Machine.

Build

Use the 'Build' Button to launch the user interface for submitting a job from Magics to the Build Processor (and subsequently the Standard DLP Machine). You will be shown the following dialog:

![Submit a Job dialog]

This window allows you to set some general build settings, specific job settings and eventually submit your build job for further processing. The dialog consists of three different sections:

- General build settings
- Job settings
- Control buttons

6.2.1.1 General build settings

<table>
<thead>
<tr>
<th>Select 3D printer:</th>
<th>Shows the selected printer (typically limited to the one that was chosen when loading the platform)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job type:</td>
<td>The build will be processed by the BP, followed by a job loading action directly to the Machine (see section Error! Reference source not found. on page Error! Bookmark not defined.)</td>
</tr>
<tr>
<td></td>
<td>Allows you to perform processing only and sending the output to a custom output folder rather than immediately to the Machine.</td>
</tr>
</tbody>
</table>
6.2.1.1.1 Preprocess Mode
In preprocess mode the job will be processed and stored in location defined in the submit job dialog. The progress of translating the input build platform to a job folder/file is shown in the ‘Preprocess Jobs’ queue of the corresponding Build Processor machine:

![Preprocess Jobs queue](image)

6.2.1.1.2 Build mode - Load to Machine
Once the job file has been calculated, it can be sent from the BP directly to the Machine. This can be done via:

- The ‘Send to Printer’ option in the right click context menu of the ‘Preprocess Job’ entry
- Automatically in case the default ‘3D Print’ job type has been chosen in the Submit Job window – job settings

This will promote the job entry from the ‘Preprocess Jobs’ queue to the ‘Build Jobs’ queue, where the Load and Monitor interaction with the Machine is initiated.
6.2.1.2 Job settings
The visibility of this menu can be toggled by clicking the arrow button. It is hidden by default. These advanced settings allow adjust the way in which the BP starts or ends the processing operation of the job (eg: pause initially or remove after completion).

Control buttons

- **Configure 3D Printer**
 - Window for the currently selected printer

- **Configure Job**
 - Open a window that provides an overview of the current job configuration. It is still possible at this point to change these settings if necessary.

 Note
 Any changes made at this point will be taken into account when submitting the job, but will not be saved back to the Materialise Magics software session.

- **Submit Job**
 - Submit the job to the Build Processor for processing and loading to the machine. A message will appear informing whether the job was successfully sent

6.2.1.3 The Build Output
The following folders and files are generated by the BP after successfully pre-processing the job.
Job file

- Parameter.ini
 - Zip file that holds all necessary files to build a part on a DLP/LCD based machine.
 - Summary of all settings used to process the input platform
- Buildscript.ini
 - File describing which DLPs need to be processed on which layer height and which pass.
- Preview DLPs
 - Set of png's DLPs showing the build platform from different angles (left, right, front, top)
- Slices
 - Set of slice DLPs (png)
7 Build Processor Setup - Profile Editor

7.1. Machine Settings

Notification

The machine settings section is only available in the Standard DLP Build processor. For all rebranded DLP build processors the machine settings section is being replaced by predefined machines in the build processor manager with specific platform and image settings suited for that specific machine.

The machine options section groups all settings that are specific for a specific 3D printing machine. This section does not have profiles.

Platform

Under the platform section in the parameter list you can define the size of the build platform that you want to use for the machine you want to setup. When loading the machine scene in Magics a platform with the defined size will be visualized. The range in X, Y & Z is between 1-2000 mm.
Image

Under Image section in the parameter list you can define all image related settings.

Image Format
Dropdown that defines the image format of the exported images. Following image formats are supported:
- 1 & 8 PNG
- 1 & 8 bit BMP
- 1 & 8 bit TIFF
- CCITT 3 Fax encoded TIF

Image Size
Defines the DLP size in X & Y of the export images in pixels.

Mirror Image around X & Y axis
Checkbox to select if the export images need to be mirrored over the X centerline and/or Y centerline

Export

Under the export section of the parameter list you can define in which form you want to export images together with the buildscript.ini and parameter.ini files. There are 3 options:

To Folder
Export the DLP to a build folder `jobname_date_time`

To Zip
Export to a build folder and compress it into a ZIP file `jobname_date_time` with a definable extension
To Encrypted ZIP

Export to a build folder and compress it into an encrypted ZIP

`jobname_date_time` with a definable encryption key and definable extension.
7.2. Material

The material section groups all sections that are valid for a certain material. In this case we only have a build strategy section under the material section. Only build profiles valid for a certain material will be shown under the build strategy section.

Material controls

The material section consists of a dropdown box to select a material a group of functions to manage materials & material naming.
7.3. Build strategy

The build strategy section groups all profiles related with how parts will be build. Each profile defines a list of build specific parameters.
Slicing

Under the slicing section of the parameter list you can define the parameter that controls the slice/layer thickness during slicing in mm.

<table>
<thead>
<tr>
<th>Slicing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Thickness</td>
</tr>
</tbody>
</table>

Curing

Under the curing section of the parameter list you can define the curing time for the first x layers in seconds and the amount of first layer it will act on. Beside this you can define also the curing time of the layer after the first layers in seconds.

<table>
<thead>
<tr>
<th>Curing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal curing time</td>
</tr>
<tr>
<td>Number of first layers</td>
</tr>
<tr>
<td>First layers curing time</td>
</tr>
</tbody>
</table>

Image post processing

Under the Image post processing section of the parameter list you can define some post processing routines that need to be executed on the slice images with a predefined drop down box. For DLP applications we provide anti-aliasing from 2x to 5x as post processing method.

<table>
<thead>
<tr>
<th>Image post processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
</tbody>
</table>

Notification

The image post processing requires additional processing time. Please take into account that when using this feature the processing time of the build processor will be longer.

Scaling

Under the scaling section of the parameter list you can define the scaling factors in X, Y & Z for the part(s) that will be build.

<table>
<thead>
<tr>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale in X</td>
</tr>
<tr>
<td>Scale in Y</td>
</tr>
<tr>
<td>Scale in Z</td>
</tr>
</tbody>
</table>
Independent scaling in X, Y from center part

![Image of independent scaling in X, Y from center part]

Independent scaling in Z from bottom part

![Image of independent scaling in Z from bottom part]

Notification

Scaling in X&Y from center part can make a part bigger in the XY plane and by doing so there is a possibility that the part collides with neighboring parts after scaling. This can result in unwanted or negative build results.

Baseplate

Under the Base plate section of the parameter list you can define with a predefined drop down box which baseplate will be generated by the build processor to ensure a good adhesion of parts and supports to the build platform of the printing device.

<table>
<thead>
<tr>
<th>Base Plate</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

None

No base plate will be generated

Platform

A baseplate with the size of the platform and a certain height will be generated.

<table>
<thead>
<tr>
<th>Base Plate</th>
<th>Type</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Platform</td>
<td>1,0000 mm</td>
</tr>
</tbody>
</table>
Height
Defines the height of the baseplate and calculates the corresponding number of layers to reach that height.

Footprint
A baseplate with the size of the support footprint with a certain offset and height will be generated.

Height
Defines the height of the baseplate and the corresponding number of layers needed to reach that height.

Offset
Defines the outward offset of the footprint contour.
Non-Solid supports

Under the Non-Solid support section of the parameter list you can define how much thickness the build processor will give to non-solid supports coming from Magics when generating images for your printing device.

![Image showing non-solid support line and thickness](image-url)
Scaffolding Supports

Notification

Scaffold supports is an optional feature that is activated by a separate license. Without this license the scaffold support section is not visible in the profile editor.

Under the Scaffolding support section of the parameter list you can define how the scaffold support generator will generate support structures to support non-self-supporting areas of your parts. Support structures are needed for every DLP/LCD printing device as it is not possible to print structures floating in resin.
Following parameters define the automatic generation of a scaffolding support

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable support generation</td>
<td>✔️</td>
</tr>
<tr>
<td>Critical angle</td>
<td>30.000</td>
</tr>
<tr>
<td>Suction force</td>
<td>10.000 kPa</td>
</tr>
<tr>
<td>Influence region interior</td>
<td>3.0000 mm</td>
</tr>
<tr>
<td>Influence region border</td>
<td>1.5000 mm</td>
</tr>
<tr>
<td>Max overhang</td>
<td>2.0000 mm</td>
</tr>
<tr>
<td>XY offset</td>
<td>0.3000 mm</td>
</tr>
<tr>
<td>Diamond width</td>
<td>5.0000 mm</td>
</tr>
<tr>
<td>Diamond angle</td>
<td>45.000 °</td>
</tr>
<tr>
<td>Edge width</td>
<td>1.0000 mm</td>
</tr>
<tr>
<td>Edge thickness</td>
<td>1.0000 mm</td>
</tr>
<tr>
<td>Distance to Part</td>
<td>1.5000 mm</td>
</tr>
<tr>
<td>Max offset from Part</td>
<td>-1 n.w/2</td>
</tr>
<tr>
<td>Connection</td>
<td>0.5000 mm</td>
</tr>
<tr>
<td>Grid Base Plate</td>
<td></td>
</tr>
<tr>
<td>Enable Grid Base Plate</td>
<td>✔️</td>
</tr>
<tr>
<td>Height</td>
<td>2.0000 mm</td>
</tr>
<tr>
<td>Notch height</td>
<td>0.5000 mm</td>
</tr>
</tbody>
</table>

General settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable support generation</td>
<td>✔️</td>
</tr>
<tr>
<td>Critical angle</td>
<td>30.000 °</td>
</tr>
<tr>
<td>Suction force</td>
<td>10.000 kPa</td>
</tr>
<tr>
<td>Influence region interior</td>
<td>3.0000 mm</td>
</tr>
<tr>
<td>Influence region border</td>
<td>1.5000 mm</td>
</tr>
<tr>
<td>Max overhang</td>
<td>2.0000 mm</td>
</tr>
<tr>
<td>XY offset</td>
<td>0.3000 mm</td>
</tr>
</tbody>
</table>
Enable support gen. Enables the support generator

Critical Angle The critical angle will set the scaffolding support generator to support every surface of the model with an angle lower than the critical angle.

![Self-supporting angle diagram](image)

Suction force This is the suction force exerted on the part for which the support generator will generate enough supports to avoid breaking away of the part from the platform and/or supports.

![Suction force example](image)

Influence region

interior/border The radius of the circle around the point that will be supported by the point in the interior part of the support surface.

![Influence region diagram](image)
Max. overhang

the overhang distance for which no support is needed

XY offset

The distance between border points and the border

Grid

<table>
<thead>
<tr>
<th>Grid</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond width</td>
<td>5,0000 mm</td>
</tr>
<tr>
<td>Diamond angle</td>
<td>45,0000°</td>
</tr>
<tr>
<td>Edge width</td>
<td>1,0000 mm</td>
</tr>
<tr>
<td>Edge thickness</td>
<td>1,0000 mm</td>
</tr>
<tr>
<td>Distance to Part</td>
<td>1,5000 mm</td>
</tr>
<tr>
<td>Max offset from Part</td>
<td>-1 n.w/2</td>
</tr>
</tbody>
</table>
Diamond width will define the size of the diamond shaped scaffolding structure.

Diamond Angle will define the angle of the diamond shape.

Edge width will define the width of the beams in the scaffolding structure.

Edge thickness will define the thickness of the beams in the scaffolding structure.
Margin to Part
Will define the hold off distance of the scaffolding towards the part

Max offset from Part
How far outside the contours of your part the support structure can be

Connection

| Connection width | 0.5000 mm |

Connection width
The critical angle will set the scaffolding support generator to support every surface of the model with an angle lower than the critical angle.

Contact

| Contact width | 0.2000 mm |
| Contact margin | 0.2000 mm |
Contact width

the width of the connection beam when it touches the part

Contact margin

the length of the contact point

Grid Base Plate

Beside the regular baseplate options the scaffold support generator has a separate baseplate option that is generated together with the scaffold support structure. This option minimizes the resin consumption of your printing device

![Grid Base Plate](image-url)

Enable Grid Base Plate

<table>
<thead>
<tr>
<th>Height</th>
<th>2,0000</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch height</td>
<td>0,5000</td>
<td>mm</td>
</tr>
</tbody>
</table>

![Grid Base Plate Diagram](image-url)
height
Height of the grid base plate

Notch height
Height of the notch

Preview
Scaffold supports can be previewed before building by processing the job in **pre-processing mode**.
8 Slice Based Operations

8.1. Why
Applying textures or structures to a model can easily result in very large STL files which become difficult to manipulate, store and transfer. Materialise has developed a technique to **skip the intermediate STL file stage** by generating the desired geometry directly into the slices using the BP.

8.2. How
Materialise 3-matic™ software models containing metadata about textures (texture bitmap, location and size of texture, white and black offsets) or structures (area, graphs, thickness of graphs) can be loaded into Materialise Magics software and placed on the build platform. The BP will then automatically apply the textures or structures directly into the generated slices.

Materialise Magics software version offers a module to generate Slice Based Structures straight from within Materialise Magics software.

Avoid the large STL data stage by using a compact file format and Slice Based Operations

The desired geometry is applied directly during slicing with the Standard Image BP

For complex parts, this STL data becomes very difficult to manipulate, store and transfer

Slice STL’s with the Standard Image BP

For more information on how to access slice based operations please visit http://software.materialise.com/making-complex-designs-printable
9 How To

9.1. How to improve the surface quality of your parts

Surface quality of your part can be improved by 2 settings:

1) Layer thickness:
The thinner the layers are that you print the smoother your outer surface will be.

2) Anti-Aliasing:
The higher your AA setting the less staircase effect you will see in your parts.
9.2. How to define the suction force

Build the calibration cone until the rod breaks. Measure the height of the cone and calculate the suction force

\[
T_{\text{suction}} = \frac{T_{\text{tensile}} \times r}{0.58 \times h/r - 1}
\]

9.3. How to define the critical angle

Print parts with different angled slopes and monitor at which angles a good quality is reached or the build is still successful.
10 Frequently Asked Questions

10.1. How do I activate my Materialise Software?
Please refer to section 3.3 Licensing for more information.

10.2. How do I access the Build Processor in Magics?
The Build Processor toolbar is available in Magics, when working in a Build Processor scene. Please refer to Chapter 6: Build Processor and Magics for step-by-step instructions.

10.3. How do I access the profile editor?
The profile editor can be accessed by:
- Configure printer button in the BP toolbar in Magics
- Edit profile button beside each profile selection box in the configure platform dialog. Only the corresponding profile section is editable at that time.

10.4. Can I view the generated Build Processor output?

Notification
Only valid for the Standard DLP Build processor. The rebranded DLP Build processors all have encrypted output files and can only be decrypted by the machine.

Yes, the generated image files in the build folder can be viewed in the Windows file explorer as thumbnails and in Windows photo viewer as the complete image. The generated buildscript.ini and parameters.ini file can be viewed by any text editor on your computer. If you selected output to ZIP or Encrypted ZIP you first have to unzip the export file before being able to view the slice images and ini files.

10.5. Can I see what settings were applied to my processed job?
Yes, in your build folder you will find the parameters.ini file that gives a summary of all parameters applied when the job was processed. If you selected output to ZIP or Encrypted ZIP you first have to unzip the export file before being able to view the slice images and ini files.
11 Typical Error message

11.1. Error message: ‘Failed to generate scaffolding support’
This error indicates in most cases that the clearance between the part(s) and the platform is too small for generating a scaffolding support structure. Increase the space between the part(s) and the platform and try again.

11.2. Error message: ‘Check if the BPS service is running’
This error indicates that the Build Processor System service has stopped running. To start it again, go to Windows Task Manager and:
 (1) locate the Services Tab
 (2) Click Services button to open the Services dialog,
 (3) Locate the ‘Materialise Build Processor System’ service
 (4) Press the play icon to start it again

![Windows Task Manager](image)

This error message means that one or more of the profiles that are assigned to this job on platform level do not exist anymore in the profile editor. Please (re)assign the profiles on platform level and submit the job again.

11.4. Error message: ‘Unexpected open contours in xxx during slicing’
This error message means that the indicated input part contains errors that result in open contours during slicing. Such errors indicate that there are errors present in the original digital model. It is highly recommended to fix these in Materialise Magics software, where you have a large set of dedicated fixing functions and visual feedback available.
11.5. Error message: ‘The part exceeds the build envelope’s bounds after rescaling.’

This error message means that one or more parts on the build platform are placed completely or partially outside the build platform before and after scaling. Reposition your parts so that they will fit the build platform taking into account rescaling.
12 Support

12.1. Contacts

We want you to have a smooth user experience when working with Materialise Magics software and the Build Processor. If you do encounter any issues, please always try to save your work and restart your system first. Should the problem persist, you may contact Materialise Support. The technical support will be able to help you with technical problems you have when working with Materialise Magics software and the Build Processor.

For more information on how to reach us, please consult:

http://software.materialise.com/customer-service

12.2. Create a Report File

In case of unknown errors the technical support of Materialise needs more detailed information of what has happened with the Build Processor or Build Processor System.

This information can be provided by the Build Processor System by creating a report file collecting data which might be useful to detect the error.

1. Open the ‘Build Processor Manager’
2. Click on the ‘Help’ button in the top right corner and click on ‘Troubleshooter’
3. Press ‘Generate Report’ to collect all data
4. Save report.cab to a temporary folder

More details on the above can be found in section 4.1: Access the Build Processor Manager on page 12.

Notification

Please do the actions described below as soon as possible after the error appears.

1. Op the ‘Build Processor Manager’
2. Click on the ‘Help’ button in the top right corner and click on ‘Troubleshooter’
3. Press ‘Generate Report’ to collect all data
4. Save report.cab to a temporary folder

More details on the above can be found in section 4.1: Access the Build Processor Manager on page 12.

Notification

No personal data will be collected. The collected data are logs of the Build Processor, information on the system environment and parameter files.

Before sending the report file to Materialise it is advised to open the report.cab to check the collected data. Make sure no data are enclosed which might be in conflict to the security policies of your company.

5. In order to send the report file successfully to Materialise the file must be zipped and password protected in order to pass the Materialise firewall.

6. Send the zipped file together with the password and a good error description to the technical support of Materialise.